(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

rev(a) → a
rev(b) → b
rev(++(x, y)) → ++(rev(y), rev(x))
rev(++(x, x)) → rev(x)

Rewrite Strategy: INNERMOST

(1) TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to weighted TRS

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

rev(a) → a [1]
rev(b) → b [1]
rev(++(x, y)) → ++(rev(y), rev(x)) [1]
rev(++(x, x)) → rev(x) [1]

Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

rev(a) → a [1]
rev(b) → b [1]
rev(++(x, y)) → ++(rev(y), rev(x)) [1]
rev(++(x, x)) → rev(x) [1]

The TRS has the following type information:
rev :: a:b:++ → a:b:++
a :: a:b:++
b :: a:b:++
++ :: a:b:++ → a:b:++ → a:b:++

Rewrite Strategy: INNERMOST

(5) CompletionProof (UPPER BOUND(ID) transformation)

The transformation into a RNTS is sound, since:

(a) The obligation is a constructor system where every type has a constant constructor,

(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:


rev

(c) The following functions are completely defined:
none

Due to the following rules being added:
none

And the following fresh constants: none

(6) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

rev(a) → a [1]
rev(b) → b [1]
rev(++(x, y)) → ++(rev(y), rev(x)) [1]
rev(++(x, x)) → rev(x) [1]

The TRS has the following type information:
rev :: a:b:++ → a:b:++
a :: a:b:++
b :: a:b:++
++ :: a:b:++ → a:b:++ → a:b:++

Rewrite Strategy: INNERMOST

(7) NarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Narrowed the inner basic terms of all right-hand sides by a single narrowing step.

(8) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

rev(a) → a [1]
rev(b) → b [1]
rev(++(x, y)) → ++(rev(y), rev(x)) [1]
rev(++(x, x)) → rev(x) [1]

The TRS has the following type information:
rev :: a:b:++ → a:b:++
a :: a:b:++
b :: a:b:++
++ :: a:b:++ → a:b:++ → a:b:++

Rewrite Strategy: INNERMOST

(9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID) transformation)

Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction.
The constant constructors are abstracted as follows:

a => 0
b => 1

(10) Obligation:

Complexity RNTS consisting of the following rules:

rev(z) -{ 1 }→ rev(x) :|: z = 1 + x + x, x >= 0
rev(z) -{ 1 }→ 1 :|: z = 1
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0

(11) SimplificationProof (BOTH BOUNDS(ID, ID) transformation)

Simplified the RNTS by moving equalities from the constraints into the right-hand sides.

(12) Obligation:

Complexity RNTS consisting of the following rules:

rev(z) -{ 1 }→ rev(x) :|: z = 1 + x + x, x >= 0
rev(z) -{ 1 }→ 1 :|: z = 1
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0

(13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID) transformation)

Found the following analysis order by SCC decomposition:

{ rev }

(14) Obligation:

Complexity RNTS consisting of the following rules:

rev(z) -{ 1 }→ rev(x) :|: z = 1 + x + x, x >= 0
rev(z) -{ 1 }→ 1 :|: z = 1
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0

Function symbols to be analyzed: {rev}

(15) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: rev
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + z

(16) Obligation:

Complexity RNTS consisting of the following rules:

rev(z) -{ 1 }→ rev(x) :|: z = 1 + x + x, x >= 0
rev(z) -{ 1 }→ 1 :|: z = 1
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0

Function symbols to be analyzed: {rev}
Previous analysis results are:
rev: runtime: ?, size: O(n1) [1 + z]

(17) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: rev
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + 2·z

(18) Obligation:

Complexity RNTS consisting of the following rules:

rev(z) -{ 1 }→ rev(x) :|: z = 1 + x + x, x >= 0
rev(z) -{ 1 }→ 1 :|: z = 1
rev(z) -{ 1 }→ 0 :|: z = 0
rev(z) -{ 1 }→ 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0

Function symbols to be analyzed:
Previous analysis results are:
rev: runtime: O(n1) [1 + 2·z], size: O(n1) [1 + z]

(19) FinalProof (EQUIVALENT transformation)

Computed overall runtime complexity

(20) BOUNDS(1, n^1)